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Accuracy Control in the Optimization of Microwave
Devices by Finite-Element Methods

Minya M. Gavrilovic and Jon P. WebiMember, IEEE

Abstract—Automatically optimizing the design of a microwave idea behind this paper is that an optimizer too should be asking
device can be prohibitively time-consuming when a numerical elec- this question because, by doing so, it might greatly reduce the
tromagnetic-field analysis is necessary at each iteration. However, amount of computation time needed.

the time taken for the field analysis depends on the accuracy re- We shall id ificallgirect ontimizati . hich
quired, and in the early stage of the optimization relatively inac- e shall consider specificaligirect optimization, in which,

curate solutions are adequate. This idea is exploited in a schemefrom a single starting design, a path is followed from point to
that combines a quasi-Newton constrained optimizer with atwo-di- point in the design space, seeking a minimum of a cost func-

mensionalp-adaptive finite-element method for finding scattering  tion (generally some function of the scattering parameters of
parameters. The scheme has been tested on thréé-plane rectan-  1hq Jevice obtained by field analysis). Direct optimization is

gular waveguide devices: a T-junction, a miter bend with a dielec- Il suited t . device desi in which th is oft
tric column, and a two-cavity iris-coupled filter. Time savings of well SUIted 1o microwave device aesign, 1n whic ere Is ohen

more than an order of magnitude were obtained, compared to the @ fairly good initial configuration available from approximate
standard approach of requiring equally high accuracy throughout  synthesis techniques and what is needed are relatively small

the optimization. alterations of the design parameters to bring the cost function

Index Terms—Design automation, electromagnetic scattering, to a nearby local minimum. Unlike stochastic methods, direct
finite-element methods, microwave devices, optimization methods. methods do not generally find a global minimum, but they take
considerably fewer cost-function evaluations, particularly when
gradient information is available.

In the early stages of a direct optimization, the cost function
V ARIOUS methods of computer-based electromagreed not be very precise. It just has to be accurate enough to

netic-field analysis are now able to provide accuraigide the optimizer in the right direction. As the local minimum

predictions of performance of many microwave devices, evgn approached, the accuracy must be progressively improved.
those that are irreducibly three-dimensional (3-D) and hay@e goal is to obtain a final design that is as accurate as if the
no simplifying symmetries. However, in many cases, th@aximum precision had been required at every stage of the op-
computation times involved are great, i.e., hours rather thggization, but more quickly.
minutes or seconds on typical desktop computers. When thesg, principle, this approach would work with any compu-
analysis techniques are embedded in an automatic optimigfional-field analysis technique, provided only that there is
which tries to improve the performance of a design iterativelyome mechanism for accuracy control, i.e., for increasing the
the run times can become prohibitive. This has prompted thgcyracy of the results at the expense of longer run times.
development of a variety of optimization techniques aimeg the present study, we have used the frequency-domain
at reducing to a bare minimum the number of times a fufhite-element method (FEM) because it is a well-developed
electromagnetic-field analysis has to be performed [1], [2]. technique for computing scattering parameters [3]-[5] and,

One question thatis rarely addressed in the optimization “t%i’articularly, because there is a body of literatureaskaptive
ature is the accuracy with which each individual field analysis [sgpms for electromagnetic-wave problems [6]-[10]. Adaptive
performed. The assumption is usually made that the field anglathods involve a sequence of analyses of the same problem
ysis is a “black box” that just gets the right answer. In realityyith increasing numbers of degrees of freedom (DOFs) and,
of course, any computational-field analysis method gives onfiyerefore, increasing computational cost, until a pre-specified
an approximate answer. Moreover, there is always a tradeoff Bzuracy level is achieved. A further advantage of the FEM is
tween accuracy and time: to get more accuracy, a longer COmgiyt it can provide gradient information—the slope of the cost
tation time is required. A sensible approach to any field analysignction with respect to each design parameter—at almost no
then, begins by asking the question: How accurate do | need 8ra cost [11]. This information is used by a gradient-based

answers to be? There is no point in waiting an extra hour fgptimizer—specifically, a quasi-Newton constrained optimizer.
an extra 0.1-dB accuracy when the quantity in question is only

required (perhaps can only be measured) to within 1 dB. Thg|

I. INTRODUCTION

ADAPTIVE FEM FOR COMPUTING THE COST FUNCTION
AND ITS GRADIENT
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at frequencyf;, and the summation is over a number of discreterom (6), any derivative of a scattering parameter can be com-

frequencies in the range of interest. In order to calculateve  puted directly from theV field solutions needed to compute

first need to calculat® at a single frequency. S. No additional system of equations needs solving—thus pro-
For an/N-port microwave device that is excited by the domividing cheap and efficient calculation &f.5;;. Furthermore,

nant mode at port, thepth column ofS can be calculated from since any cost function is defined to be a functiorseparam-

the resulting electric field) inside the device using mode or-eters, computing/C becomes trivial.

thogonality, which leads to Since any numerical method is an approximation to the actual
@ { 20) solution, it will contain a certain error. The solution accuracy is a
Sii =% (E ) — bij (1) function of the number of DOFs in the problem. Increasing the

‘ number of DOFs reduces the error in the solution. Increasing
whereé;; is the Kroenecker delta ang“) is a linear operator DOFs in a FE problem is commonly achieved by subdividing
extracting the voltage of modeat port: from the electric field elements or by approximating the field solution in each element

[11]; subscript 0 denotes the dominant mode. with higher order basis functions. Regardless of the method, the
The FEM can be used to comptﬁéﬂ by solving the modi- computational benefits of concentrating DOFs in certain areas,
fied weighted-residual equation adaptively, are well established. There are three key components
to any adaptive algorithm: error estimation, error indication, and
B (E(j), u7) = R(@) (2) the refinement method.
] ] ) - An error estimator estimates the error in the quantity of in-
for all weight functionsis, whereB is the bilinear form terest in the problem for a particular mesh. Two common termi-

nation criteria are to adapt until the estimated field error in each
element has been reduced to a certain tolerance or to adapt until
the estimated error in a global quantity of interest has reached a
certain tolerance.

B (EU), w)

1 o 1 o
/{VXEwH_va_@mnﬂw}m
Q

~ Jkotlo o
N oo o An error indicator [13] assesses the relative error in each FE
+ Z Z %(p) (E(”) %(p) (1) (3) for use by the refinement algorithm in choosing where to add
p=11=0 DOFs. An indicator does not have to provide an absolute esti-

mate of the error. It only has to assess the eretative to the

wt_w;r_etﬁ IS the t\;]olurr}et!nade the ds\lflce" Is the :jelanve Ft)r?r- rest of the elements in the mesh. Note also that an indicator may
mittivity, 4., is the relative permeability, and, andn, are the o 5 4sessment of the local contribution tical quantity

G . be
free-space wavenumber and intrinsic impedance, respect|vﬂy4].

R is the linear function ) . .
Refinement techniques are methods for adding DOFs to one

R(W) = 2%()15(117)_ (4) or many elements in a mesh in order to increase the accuracy
of the overall solution. An example of a refinement technique is

In order to solve the problem numerically, the unknown fieltb refine a fixed number of elements at each step (e.g., 25% of
must be represented by a finite number of DOF—in this casa| elements). The elements refined are those with the highest
with a mesh of nonoverlapping FEs filling the interior of the deerrors, as predicted by the error indicator. As mentioned earlier,
vice. The basis functions that approximate the field distributido increase the accuracy of the solution, one must increase the
in each element allow for computation 19 at any point in DOFs by either adding more elements or increasing the poly-
the problem domain. Representif§’ in this way, and setting nomial orders of existing elements in the mesh. The process of
the weight function to each basis function in turn in (2)—(4) resubdividing an element is referred to agype adaption [15].
sults in a large, but sparse matrix equationd@?, a vector of P-type adaption (op-adaption) is a method based on increasing

unknown coefficients of electric field the orders of elements to increase the accuracy of the solution
. [16], [17]. In order to allow mixing of the orders of elements in
Ke) =b (5) amesh, basis functions in each element must be hierarchical. In

. . i _ this study,p-adaption is used with the hierarchical elements of
where K is the global finite-element (FE) matrix arslis a 318]'
e_

known vector representing the sources of the problem and . . .
rived from R. The adaption is performed forasmgle.frequency, the ad'aptlon
A point of interest with regards to optimization is that a{requen?)_/f ’E Th'ts.'s cr;josetn to dbe ;[he_tulghest frte:]utehncyrlln tthe i
derivative of a scattering parameter can then be ef“ﬁcient\r!gngeI 0 |tr;]ertehs in orderto ﬁ_ ip Wi respe:h 0 gst_or est
calculated with the adjoint variable method [12]. It has beei ave ?ng —us gnsurltr;]g 'q{_ ertaccfuracy_ §n| adap mg a
shown [11] that, for a scattering parametgy;, the adjoint 0\|Ner requttra]ncu(ajs. t.nce c€es m:aeo %rro‘r‘|s teo(;/v at_cer":;un
variable conveniently becomes just the field solution wheth erance, the a ?ﬁ ve prtzjces.?hstrc])ps an ‘Z. F;OZ '? ap flvtf Olze_
port i is excited and the derivative with respect to a desi pency sweep is then use (wi € same distribution o s
as yielded by the adaptive procedure) to calculate the cost func-

parametey; becomes . X .
tion over a range of frequencies. The frequency sweep requires
ds;; L yr dK ) additional FE solutions at a number of discrete frequency points.

=—-e"/ —e

dg 2 dg ’ 6 An alternative would be to use a technique that finds higher
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derivatives of the field with respect to frequency, and builds thetroducing basis functions reduces (11) to

frequency response in this way [19]-[23]. 1
For each adaptive iteration, 25% of all the elements are in- Sij = 57

creased in order by one. Since accurate gradient information is JoTlo

necessary for the types of optimizers used in this study, the erfFsom (12), we see that the computational expense in calculating

estimator used for termination of the adaption is based on taeS-parameter comes from the matrix calculation of the general

gradient of the cost function. The derivative of a cost functioform

with respect to a geometric parametecan be expressed as a T

sum of derivatives at nodes on all boundaries and interfaces pa- F'=u Ky (13)

rameterized by. A good estimate of the error in this derivativ%hereu andv are a pair of FE solutions ark{ is then x n

can be found from the rate of change in the cost function due Rbal matrix. Functiod” can be decomposed into two parts as
the perturbation ointernal nodes of the mesh (internal nodesg s '

being those whose movement do not alter the geometry of the |

e Ke _ ;. (12)

problem) [24]. For various cost functions (defined for a single F=F; +AF, (14)
frequency), good estimates of the errors in their gradients can B o _
be computed with little computational effort [24]. where[y is I" with its kth DOF zeroed, i.e.,

Error indication is based on refining,, the cost function n on
at the adaption frequency. It has been shown that, in problems Iy = Z Z u K505 (15)
where a global quantity (such as a cost function basesi-pa- =1 j=1
rameters) is desired rather than the field itself, a targeted error gk

indicator (TEI) is the better choice [14]. From the framework ignd A 77, can be computed by

[14], a TEI for microwave devices can be derived. . .
Quantities/y, ..., Iy are defined to be the real and imagi- _ - e

nary parts of the complex scattering parameters such that ALy, = ; ur kv + ; i Kip Vg (16)

) ) ) itk

I . I’IST SZ ST SZ B Srr 7 SZr 7 7 . . .

by > St Stz Sa o Shows Sy () An efficient algorithm that uses (16) to calculate all changes,

whereV = 2N2. The estimated errorsif, ..., Iy are e, AR, ., ARy, TS

Al ..., Aly = AST), ASYy, AST,, ASY,, ..,
ASKy, ASyy (®) AL=0

t=1,...,n

whereAS;; is an estimate of the change in the comptepa- i = Lo,

rameter when théth DOF is zeroed. An error indicator for the J = 1, ..., n )

kth DOF, based on global quantity, is then defined as follows: If Ki; = 0, skip (to account for the

sparsity of Kij)
k a
=122 gr AL if i #
* AFJ = AFJ + U,iKijUj
Jdeg, » acg i dcg i
= WAS]‘I—’_WAS]‘I—F.“—FWASATAT (9)

11 11 NN This algorithm computeA 7, ..., AF,, with no more com-
where the terms of the sum depend on the choice of cost fufational cost than computing' Kv. Using this approach, the
tion. estimates of the changes of the compleparameters when

An error indicator for aith-order element can now be define@ch DOF is zeroed, i.@\S51s, ..., ASy v, need only be com-

as a sum of the contributions &f for all DOFsk of that element Putedonce,globally, and stored for subsequent use. Any esti-

that are of ordep (i.e., not contained in the element of ordefNate ofAS;;, needed in (9) for DO, is readily available from
p—1) global quantities.

e = Z ok (10) [ll. OPTIMIZATION TECHNIQUE

pthorder DOF's Let C be the cost function to be minimized agde a column

While it may seem computationally expensive to Compu,Eéector ofd real-valued design variables. Since, in general, it is

AS;; a number of times for each element in order to evalua gswable to satisfy constraints on the design variables during

the indicator of (10), the programming is quite simple and tht € optimization, the problem to be solved is

computational costs are low. For calculationbparameters, minimize  C(g)
(1) can be alternately written in terms of the bilinear form geRe
1 Sy 20) subjectto: h;(g) =0, i=1,...,m
L= g J — .
S = gy, B (B9 B) = b (1) hi(g) <0,  i=m+1,....m (A7)
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wherem is the total number of constraints;’ of which are

initial Cost Function CvC
quality constraints. The solut.ic@ of (17) can be shown to | Approximate > »| Evaluation (CFE) .
satisfy the Kuhn—Tucker equations Design I
Method ===k
N A j  ACCURACYLINK |
VL(gl)\): Sl dakeiate
;\h(g) =0 i=1 m _g_{ Constrained Optimizer Iq___
by — Y, =4, ...,
~ final
N>0,  di=m/+1,...,m (18) ve™
whereL is the Lagrangian function Fig. 1. Block diagram of an optimization scheme with an accuracy link.

_ . the final CFE. However, heavy computation can be avoided by
L(g, ) = Clg) + Z Aihi(g) (19) using CFEs of lower accuracy for steps whgtes far from the
=1 optimum. The early steps of an optimization scheme may not

and X is anm-vector of Lagrange multipliers, taking the valugequire CFEs that are very accurate. As the process continues
X at the optimum. The approach taken by direct optimizers #d the parameters near an optimum, every CFE can become
to find a solution to (18) that ifocally minimal; in general, increasingly accurate. The design space of the cost function in
such a point will not also be a global minimum. In this studysuch a scenario is dynamic in nature and is allowed to change
the MATLAB toolbox (function “constr.m”) was used to do the(rather than stay fixed) throughout the optimization until it gets
constrained optimization. This solves (18) for a local minimurél0se to an optimum, where the changes in the design space be-
using sequential quadratic programming (SQP). come very small.

The details are in [25] At each step of SQP, a new searchAn automated optimization scheme links the Optimizer to
direction is generated by solving a simpler quadratic-progra®@ch CFE in order to control the level of accuracy of the CFE
ming (QP) subproblem. To set up this subproblem requires tHgoughout the optimization (see Fig. 1) instead of demanding a
latest estimate of and the gradien¥C at this point. Once a fixed accuracy.
new search direction is found, a line search determines the pointn the present case, the CFE is an adaptive FE analysis whose
along that direction that has the smallest valu€afonsistent accuracy is dependent on an error estimate. When the error es-
with the constraints. Another QP subproblem is then set up. timated in the FE solution at an adaptive step is below a certain

There are a number of ways this iteration can be terminatd@lerance, the adaptive process stops. The accuracy link can in-
Perhaps the simplest method is to stop when the changem crease the accuracy of the CFE by reducing the error tolerance.
g from one step to the next is sufficiently small, but this can be A quantity that decreases throughout an optimization is the
unreliable because, occasionally, there will be a small chargf@dient of the cost function (or, rather, the gradient of the La-
even a long way from the local optimum. The method used gfangianV L for constrained problems). At an optimum, theo-
this study is to terminate when the gradient of the Lagrangia@tically, |[VL||> = 0. We then require of the CFE that, for a
is small enough since, according to (18), this gradient shouéven positive numbet
be identically zero at the optimum. “Small enough” we take to

mean a sufficient reduction for the initial value, i.e., stop when . . ) )
P ||estimated error iV L*||, < o ||[VL*7Y||,.  (21)

‘2 (20)  As the optimization progresses, this holds the percentage error
in||VL||. fixed at a level determined by. As ||V L¥||, reduces

where superscript denotes the value at the end of ttté line  with an increase ik, this has the effect of increasing the accu-

search andR is the required reduction factor. A value of 1000acy of the FE solution as an optimum is approached. Of course,

HVLk+1H2 < % HVLinitial

was used in this study. if v is settoo small, it may not be possible for the CFE algorithm
to satisfy (21). However, in any cases, a value that is too small
IV. CONTROLLING ACCURACY DURING OPTIMIZATION will lead to unnecessarily long computation times, as demon-

o ) _ strated by the results below. A practical range for alpha is be-
Many optimization problems deal with cost functions that cagyeen 0.01-1: a value of 0.1 was found to work well for the

be determined analytically. In such cases, the cost functionei)@amwes tried to date.

in effect “infinitely” accurate and the accuracy of cost-function o, problems involving analysis over a range of frequencies,

evaluations (CFEs) is not a concern. In problems where a Clfg cost function and its gradient (and, in tUiR;L*||,) is cal-

is calculated using a n.umerical approximation, the accuracy Qfiated as a sum over a number of discrete frequency points.

the CFE becomes an issue. _ _ ~_ Since the adaptive process is performed for a single frequency,
Two quantities that must be chosen in a design optimizgse estimate of the error |[W L*||» is available only at the adap-

tion are the accuracy of the optimization process itself (termjgp, frequencyf,. Requirement (21) is approximated by
nation criteria) and the accuracy of the cost function at the op-

timum. One way of ensuring that an optimizer finds an accu-
rate optimum is to perform every CFE as accurately as that of Ny ||estimate of error itV L[|, < o ||[VL* Y|, (22)
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whereV L is the gradient of the Lagrangian of the single fre- /\
quency cost functior, and Ny is the number of frequency
points sampled. Sinc€ L* is calculated by \/

m
k __ k k k
vLa - vCa + Z )‘i Vhi (23) Fig. 2. Diagonal flipping between adjacent triangular elements.
=1
from (22) we have = M
m ‘%
Ny ||est. error in(Vek) + est. error |n<z Y Vhi> 3
=1 2 A
<a||VL*Y,. (24 S
Since we do not have error estimates for the Lagrange multi- g -

pliers, we drop this term and require simply that
Fig. 3. Discontinuous cost function.
Ny ||estimate of error ive}||, < a|[VL*!|,.  (25)

A good estimate for the error ¢, is available from the FE forlarge changesin geometry can create poorly shaped elements;
solution, as mentioned above and explained in [24]. In order #3/'S dragging the nodes replaces re—meshw:)gonlywhenthe max-
smooth out any potential discontinuities due to large chang8m change in a parameter is less than 10%. This was found to

in |[VL*||», a weighted-average approach is used and (25) B¥2rk well in practice. _ _ S
The accuracy of a CFE is only changed at main optimization

comes
steps. Line-search CFEs are kept at a constant level of accuracy

Ak, < a<wA§—11 +(1- w)Af‘f) (26) as far as possible, i.e., using the same right-hand side in (26).

° ° Varying the accuracy of line-search CFEs changes the target of

where A¥, = |estimate of erroritvek|l,, Ak, = the bisection algorithm (the line-search method used). Attempts

IVL¥||./N; and the weightw was typically chosen to to reduce the cost function in such cases can lead to a large
be 0.9 ! number of line-search steps and possible nonconvergence.

The optimization—adaption system is illustrated as a block

process, where the FE solution adapts at a single frequency uﬁﬁgra}m n Fig. 4. In order to allow theoflrsF CFE _Of the
(26) is satisfied. (The error indicator used for the adaption %)tlmugtlon to be adaptive, a value fijiVL ”2_ S requwed. .
(10), targeted toward the single frequency cost functioh To provide a rough r_eference val_ue, a pre-optimization CFE is
After the adaption is complete, the second part of the FE anBErformed nanadapiively at a umforr_n low ordgr _(chc_)sen o b_e
ysis is a post-adaptive frequency sweep overtheoints per- second Ofdef)- The. geom(_etr_y fqr this pre—optlmlzatm_n stg P IS
formed with the same distribution of DOFs as the final step (t)tFe Same as |n0th§ first optu_”nlzat|0n step. The approxn”r.]at.lon IS
the adaption. The adaptive frequency is available from the fifpde thaf| VL[| is appgoxmat_ely equal to the pre-optimiza-
part and does need to be recalculated, thus, the frequency Sw%cqmputanon Off VL. Th|s_ quick uniform-order CFE.
is actually performed oveN; — 1 points. The result of the fre- adds little to the_ overall computatpngl C(.)St’ yet allows adaptive
guency sweep is the cost function and its gradient—the desirg}ving for the first CFE of the optimization.
quantities needed as input to the optimizer.
The adaption need not necessarily be performed over a single
frequency. Alternatively, a frequency sweep could be performedwe optimize three -plane rectangular waveguide junction
at each adaptive step to calculate the full gradiéat*. How- models: a T-junction with an inductive post, a mitered right-
ever, this would be very costly computationally and the approxngled bend with a dielectric column, and a two-cavity iris-
imation||Vck||2 = ||[VC*||2/N; works adequately in practice. coupled filter. Three optimizations with different accuracy con-
A subtlety that was encountered in testing was the phenotrels are compared for each problem:= 0.1, « = 0.01 and
enon of “diagonal flipping.” For small changes in geometry, the third benchmark case. The benchmark optimization requires
structure of the mesh might change. While the change may ésch CFE to be of the same accuracy as the CFE at termination.
as small as a diagonal being flipped between two adjacent trhe termination criterion (20) guarantees that the final gradient
angles (Fig. 2), this variation in the FE solution will make thef the Lagrangian (when the optimization terminates)/i&th
numerical cost-function discontinuous (see Fig. 3). of its initial value. Combining (20) and (25) gives the accuracy
Smalldiscontinuities i’ throughoutthe optimization are usu4ink for any CFE for the benchmark or “fixed accuracy” case
ally acceptable, except near termination wié&ns changing by
small amounts and the gradients are small. Here, there can be anV; ||estimate of error itk ||, < % VL™= (27)
adverse effect on convergence. A certain level of continuity near
local optima can be preserved by avoiding re-meshing; insteadalierece = 0.01.
nodes affected by thatchange aredraggedinthe appropriate dire¢tr comparing the costs of optimizing the three different de-
tion by the amounig***. Forcing the same mesh configuratiorvices using the system described by Fig. 4, cumulative floating-

The present CFE has two parts. The first part igtaelaptive

V. RESULTS
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Adaptive Finite Element Cost Function Evaluation

Generate mesh p-adapt at frequency
Lpp|  with pniform, - fa until Aggt < Ay
2 order
elements +
Frequency sweep
o (Ne— 1 points) _I
gls
Tl ®
Ela
=
oo L. .
als Optimization
2 C (V¢ Ay
3 €
E
. NO SQP 7 N
Parameterization Teminate? Constrained Optimizer
t :
Pre-Optimjzation CFE
(uniform 2 order FEM)
initi End of line
mitel search?
Update A >
Fig. 4. Optimization—adaption block diagram.
point operation counts are used rather than CPU times. In a typ- -2,
ical FEM, most of the computational effort lies in solving the [ 1
matrix equation. The size of the matrix equation depends on the \ &
total number of DOFsr{() for that solution. In two dimensions,
the computational cost of solving a matrix equation by an ef- al |Port 2 Port 3
ficient sparse direct method, such as the frontal method [26], inductive post
is roughly proportional ta:? for largen. Since the computa-
tional cost of the optimization program, parameterization, and
meshing is negligible compared to the cost of the matrix equa- L2 — .
tions solved during a CFE)(n?) is taken as approximately the 1 Port 1 1
total computational cost of a single optimization step. 3
The computational cost of any CFE then is based on the a

cumulative cost of solving a number of matrix equation%ig. 5. Initial geometry and dimensions of the waveguide T-junctios: 2

An N-port device requiresV FE solutions per frequency. Incm,! = 0.1x = 0.23 em,g, = 0.5 cm, g, = 1 cm.

the p-adaptive FE solution, ifV, adaptive steps are taken to

converge the solution at a single frequency and the subsequgiithe inductive post to help the incident wave split and change
frequency sweep requires an additiongl — 1 solutions, the direction by 90 (i.e., maximizing the transmission to ports 2

cost of one CFE is and 3) [27], [28]. The initial geometry of the model and its geo-

N metric parameters are given in Fig. 5.

- 1) 2 2 The cost function for the problem is defined as
NS (nlil)” + (Nf = 1)(n[Na]) (28)

i=1 Ny
wheren[t] is the number of DOFs of thi#h adaptive step. The Cle) = ; “ (29)
overall cost of an optimization is taken to be the sum of the =
computational costs of the CFEs. where the single-frequency cost function is

J— (2

A. Waveguide T-Junction With Inductive Post ¢ = [Su(fl (30)

In this example (Fig. 5), the return loss at the input (port Ihe cost function calculation samplég = 5 discrete points
is optimized with the use of a symmetrical inductive septum (fxetween 8—-12 GHz. The frequency of adaption is taken to be the
post). Reflection can be minimized by varying the dimensiorenter frequency, = 10 GHz.
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—<—Alpha=0.1 —T—Alpha=0.01 —* Fixed accuracy

1E+0 7
8E-1 7
=
2 4
t:" 6E-1
=]
<
Q
O
9E-1 Initial Optimized
0E+0 T T T T 1
1E+5 1E+6 1E+7 1E+8 1E+9 1E+10

Computational Cost

Fig. 6. “True” values of the cost function and the corresponding computational costs for different accuracy links in the optimization of therE-juncti

For any problem, it is important to choose constraints that TABLE |
limit the geometric parameters to a range where any geometry of COMPLX@E‘S;‘:&&?EE &NE’HSEP%J'TJ;’ETTQETSETSI“;‘;ET'IDC"T\‘FERENT
the device within that range is physically possible. A poorly con-

strained optimization problem (or an unconstrained one) mésAccuracy Link Computational Cost (28) Speed-up Factor
allow edges or boundaries to overlap—making it physically imF g accuracy 3 73E+09 1
possible to build and a useless design. A well-constrained o —0.01 2 32E+07 46
timization problem will converge more quickly than a poorly e ’ ’
a=0.1 5.92E+08 117

constrained or unconstrained problem. Although the constrain
for the inductive post are quite simple, the choice of upper and
lower limits must be made. An additional concern in the opti-
mization of a device is meshing. While a particular geometry
may be feasible (in a physical sense), meshing difficulties can
easily arise when modeling the device. Edges too close together
or too small in themselves may force the generation of many
small elements—which may not be necessary. To prevent this, a
minimum “cushion” of space was left between any two bound- a
aries—thus affecting the choice of bounds for the parameters.
For the T-junction meshes, a cushion of 0.1 cm worked well.
The lower limits for both parameters are takento be 0.1 cm. The
upper limit forg; (1.9 cm) was chosen becausgat= 1.9 cm,

the bottom edge of the postis 0.1 cm shorter than the port width
of 2 cm. The upper limit ofy> was chosen because when

is at its upper limit, the left and right edges of the post are
0.1 cm away from ports 2 and 3, respectively. Four inequality

constraints of the form(g) < 0 are Fig. 7. Initial geometry and dimensions of the miter bemd= 2 cm,1 =
0.1 = 0.454 cm, g, = 2v/2cm,g. = 1 cm,gs = 1 cm, g, = 2v/2 cm.

1 1od

=g —19 TABLE I
COMPUTATIONAL COSTS AND SPEED-UP FACTORS FORDIFFERENTACCURACY
LINKS IN THE MITER-BEND PROBLEM

Accuracy Link Computational Cost Speed-up Factor
ha(g) =0.1 — go. (31) Y i peec-tp
Fixed accuracy 6.95E+09 1
Table | gives the final computational cost for each optimiza «=0.01 2.54E+09 2.7
tion and a speed-up factor in each case. The speed-up facto  ,-¢ 3.19E+08 22

relative to the cost of the benchmark fixed-accuracy optimiza-
tion. The results in Table | show the impressive speed-up that

can be attained by controlling accuracy usimgln the case the cost function versus computational cost throughout the opti-
« = 0.1, the design process finds the same optimum as the mosration. In order to provide a fair comparison of cost-function
accurate case, butat 117 times the speed. However, Table | gvasies, each cost function must be of the same accuracy level.
information only about the final costs. Fig. 6 shows the values 8ince tenth-order elements (for the work in this paper) achieve
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Fig. 8. “True” values of the cost function and the corresponding computational costs for different accuracy links in the optimization of thedniter ben

the highest accuracy (for a fixed mesh size), each pointin Fig. | | e o
is the tenth-order cost-function value at the geometry of that pat «
ticular optimization step. In other words, it is a plot of the “true”
value of the cost function obtained using the different accurac
links.

Fig. 6 shows that a great deal of the computational costs il,
the optimizations lie in the final few steps, which is expected
because the CFEs require higher accuracy levels as an optimu
is approached. In addition, Fig. 6 shows that throughout an og S M
timization (not only at the end), controlling accuracy can dras- Tgﬁ A %ng/Z
tically reduce computation time without sacrificing the validity l
of the cost function. In other words, despite the fact that CFIEg. 9. Initial geometry and dimensions of the model of one-quarter of the
are of lower accuracy at the initial stages of an optimization (fé¥o-cavity filter.a = 19.05 mm,7 = 0.1A = 3.31 mm,# = 0.1 mm, g, =
a = 0.1 anda = 0.01), the cost function does genuinely reducd® ™M 9z = 3 MM. gz = 16 mm.
by the same amount as the fixed accuracy optimization—at
much lower computational cost. %ereé = 0.1cm and =

1 uod

planes of symmetry
I 12

’

Y

= 0.1\ = 0.454 cm. The frequency of
adaption is taken to be 10 GHz, i.e., the center frequency. The
initial geometry centers the square dielectric block (of dimen-
sion 1 cmx 1 cm) in the middle of the device.

In this example (Fig. 7), the return loss is optimized in two Table Il gives the final computational cost for each optimiza-
ways: by varying the length of the chamfer at thé ®@nd and tion and a speed-up factor in each case. The results show the
varying the dimensions and position of the dielectric block [29%peed-up that was attained by varying
The definitions of the cost function and frequency range areFig. 8 plots the values of the cost functions and associated
identical to those given in the previous problem. The optimizaosts throughout the optimization. It is apparent that great sav-
tion parameters and initial geometry for the problem are showngs can be realized at any step of the optimization when the size
in Fig. 7. The constraints that were derived for this problem aoé « is varied. (The last value @ for thea = 0.1 optimization

is actually higher than that of the previous step. This is a results
of terminating the optimization within a line search. While the

B. Miter Bend With Dielectric Column

(CAD) tools is common in achieving bandpass filter charac-

h(g) =g1 — V2(1+1) +6 actual cost function may increase slightly, the gradient of the
ha(g) =6 — a1 Lagrangian has satisfied the termination criterion.)
Z?’(g) :z C. Two-Cauvity Iris-Coupled Waveguide Filter
1(8) = Fig. 9 shows a two-cavity iris-coupled filter, which is to be op-
hs(g) =26 timized for a given frequency band. The design and optimization
he(g) = g1+ g3 + 294 + 2(6 \/E) of iris-coupled waveguide cavities using computer-aided design
)
)
)

(

(
h(g

(

(

=93 =294 +28 teristics [30]-[33]. Filters of this type have resonating cavities
hs(g) = g2 + g3 — 204 + 2V2(—1 + 6) (where each guide cavity is roughly’2 in length), coupled by
ho(g) =g + g3 + 294 — 2V/2(1 — 6) (32) thin (or thick) irises with coupling apertures between any two
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Fig. 10. Initial and optimized frequency responses of the return loss for the two-cavity filter.

cavities. While some designs make use of varying the thickness TABLE Il
of each iris as design parameters [30], [32], the two-cavity filtroMPUTATIONAL COSTE:EE?; EEDUP PACTORS FORDIFFERENTACCURACY
described below has irises of constant small thickness.

The characteristics of a bandpass filter are to maximize tran Accuracy Link Computational Cost Speed-up Factor
mission over a band of frequencies and stop transmission OlFixed accuracy 8.39E+10 1
s!de that band. While filter design speuﬂc:_;\tlons are commonl 2=001 3.01E+10 28
given by passband and stopband attenuation, a slightly differe
approach is used here: minimize reflection in the passbanda =91 7.33E+09 1t
minimize transmission in the stopband. The cost function for
the problem is

cavity resonances are within this range of frequency. The FE
NP N solution is adapted at the center frequetfgy
C(g) = &+ Z & (33) Choosing constraints for the geometric paramete_r; is qmte.
simple because, as long as the parameters are positive quanti-
ties, there cannot be any overlapping of edges. Six inequality
where there areV? discrete frequency points sampled in theonstraints can be written as
passband and/; points in the stopband. The single frequency

cost functions [in the summation terms of (33)] are given by hi(g) =g1 — 10
o2 ha(g) =2 — g1
c = |Su(/f} )|2 ha(g) =g2 — 10
& = 1S()P (34) ha(g) =2 — oo
The design problem has three varying geometric parameters. hs(g) = g3 — 20
The aperture width of the left- and right-most irises (symmet- he(g) =10 — gs. (36)

rical) is g;. The aperture width of the center iris 5. The
) 1S 0. b = The thickness of the irises was taken to be 0.1 mm.

lengths of the two symmetrical cavitiesgg. The geometric pa- o ; . .
9 y A g P To optimize the filter effectively, both resonant frequencies

rameters and dimensions are illustrated for one-quarter of the - :
problem in Fig. 9. must be within the passband frequency range (also meaning they

The frequency range is taken to be between 11.8-12.2 e close together because of the relatively narrow bandwidth).
with a passband (of 100-MHz bandwidth) centerédf,at.: A poor initial choice forg might have resonant frequencies that
12 GHz. The passband and stopband are, therefore are far apart and far from the passband. In addition, a resonant

cavity frequency might be outside the entire range of frequencies

Passband: 11.95 GHz < f < 12.05 GHz sampled (outside the stopband as well). Using a frequency
sweep for such a poor design will not work because there will
Stopbands: 11.80 GHz < f < 11.95 GHz be no detection of the presence of the cavity resonance in the

12.05 GHz < f < 12.20 GHz (35) sampled frequency range. However, microwave filter designis a
good example of where an initial geometry is found by an initial
The total number of frequency points sampled for the CFE ésign method [9] and “tuned” by the optimizer to enhance
Ny = 21, with N}’ = 15 points in the passband add; = performance. The method of filter design from [9] is used to
6 points in the stopband. A greater number of points are takdasign a filter to have the frequency response within a desired
in the passband because, in the optimal design of the filter, batitial range. The initial geometry useddgs= [4.5 3 16]T mm.
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Fig. 11. “True”values of the cost function and the corresponding cumulative computational costs for different accuracy links in the optintization-cavity
filter problem.

The initial design and final frequency responses for the rperhaps not worthwhile. However, the approach applies equally
turn loss of the two-cavity filter are shown in Fig. 10 (based ot 3-D, where the costs are dramatically greater. Moreover, it is
an evaluation of 500 discrete points in the frequency range). Ast limited to thep-adaptive method employed here, or even to
expected, due to the sensitivity of the device, the geometric ghe FEM. Any computationally intensive analysis scheme with
rameters do not change by a large amount in the optimizatiarcapability for accuracy-time tradeoff could benefit from the
of the device (maximum parameter change is roughly 20%), y&tme approach.
produce a big difference in the performance of the device.
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