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Accuracy Control in the Optimization of Microwave
Devices by Finite-Element Methods
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Abstract—Automatically optimizing the design of a microwave
device can be prohibitively time-consuming when a numerical elec-
tromagnetic-field analysis is necessary at each iteration. However,
the time taken for the field analysis depends on the accuracy re-
quired, and in the early stage of the optimization relatively inac-
curate solutions are adequate. This idea is exploited in a scheme
that combines a quasi-Newton constrained optimizer with a two-di-
mensional -adaptive finite-element method for finding scattering
parameters. The scheme has been tested on three-plane rectan-
gular waveguide devices: a T-junction, a miter bend with a dielec-
tric column, and a two-cavity iris-coupled filter. Time savings of
more than an order of magnitude were obtained, compared to the
standard approach of requiring equally high accuracy throughout
the optimization.

Index Terms—Design automation, electromagnetic scattering,
finite-element methods, microwave devices, optimization methods.

I. INTRODUCTION

V ARIOUS methods of computer-based electromag-
netic-field analysis are now able to provide accurate

predictions of performance of many microwave devices, even
those that are irreducibly three-dimensional (3-D) and have
no simplifying symmetries. However, in many cases, the
computation times involved are great, i.e., hours rather than
minutes or seconds on typical desktop computers. When these
analysis techniques are embedded in an automatic optimizer,
which tries to improve the performance of a design iteratively,
the run times can become prohibitive. This has prompted the
development of a variety of optimization techniques aimed
at reducing to a bare minimum the number of times a full
electromagnetic-field analysis has to be performed [1], [2].

One question that is rarely addressed in the optimization liter-
ature is the accuracy with which each individual field analysis is
performed. The assumption is usually made that the field anal-
ysis is a “black box” that just gets the right answer. In reality,
of course, any computational-field analysis method gives only
an approximate answer. Moreover, there is always a tradeoff be-
tween accuracy and time: to get more accuracy, a longer compu-
tation time is required. A sensible approach to any field analysis,
then, begins by asking the question: How accurate do I need the
answers to be? There is no point in waiting an extra hour for
an extra 0.1-dB accuracy when the quantity in question is only
required (perhaps can only be measured) to within 1 dB. The
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idea behind this paper is that an optimizer too should be asking
this question because, by doing so, it might greatly reduce the
amount of computation time needed.

We shall consider specificallydirect optimization, in which,
from a single starting design, a path is followed from point to
point in the design space, seeking a minimum of a cost func-
tion (generally some function of the scattering parameters of
the device obtained by field analysis). Direct optimization is
well suited to microwave device design, in which there is often
a fairly good initial configuration available from approximate
synthesis techniques and what is needed are relatively small
alterations of the design parameters to bring the cost function
to a nearby local minimum. Unlike stochastic methods, direct
methods do not generally find a global minimum, but they take
considerably fewer cost-function evaluations, particularly when
gradient information is available.

In the early stages of a direct optimization, the cost function
need not be very precise. It just has to be accurate enough to
guide the optimizer in the right direction. As the local minimum
is approached, the accuracy must be progressively improved.
The goal is to obtain a final design that is as accurate as if the
maximum precision had been required at every stage of the op-
timization, but more quickly.

In principle, this approach would work with any compu-
tational-field analysis technique, provided only that there is
some mechanism for accuracy control, i.e., for increasing the
accuracy of the results at the expense of longer run times.
In the present study, we have used the frequency-domain
finite-element method (FEM) because it is a well-developed
technique for computing scattering parameters [3]–[5] and,
particularly, because there is a body of literature onadaptive
FEMs for electromagnetic-wave problems [6]–[10]. Adaptive
methods involve a sequence of analyses of the same problem
with increasing numbers of degrees of freedom (DOFs) and,
therefore, increasing computational cost, until a pre-specified
accuracy level is achieved. A further advantage of the FEM is
that it can provide gradient information—the slope of the cost
function with respect to each design parameter—at almost no
extra cost [11]. This information is used by a gradient-based
optimizer—specifically, a quasi-Newton constrained optimizer.

II. A DAPTIVE FEM FOR COMPUTING THE COST FUNCTION

AND ITS GRADIENT

The cost function is assumed to be a known function of
the entries of the scattering matrixof the device. In general,
these are frequency-dependent; in this study, we assume that
is of the form , where are specified weight
functions, are known functions of the scattering parameters
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at frequency , and the summation is over a number of discrete
frequencies in the range of interest. In order to calculate, we
first need to calculate at a single frequency.

For an -port microwave device that is excited by the domi-
nant mode at port, the th column of can be calculated from
the resulting electric field inside the device using mode or-
thogonality, which leads to

(1)

where is the Kroenecker delta and is a linear operator
extracting the voltage of modeat port from the electric field
[11]; subscript 0 denotes the dominant mode.

The FEM can be used to compute by solving the modi-
fied weighted-residual equation

(2)

for all weight functions , where is the bilinear form

(3)

where is the volume inside the device, is the relative per-
mittivity, is the relative permeability, and and are the
free-space wavenumber and intrinsic impedance, respectively.

is the linear function

(4)

In order to solve the problem numerically, the unknown field
must be represented by a finite number of DOF—in this case,
with a mesh of nonoverlapping FEs filling the interior of the de-
vice. The basis functions that approximate the field distribution
in each element allow for computation of at any point in
the problem domain. Representing in this way, and setting
the weight function to each basis function in turn in (2)–(4) re-
sults in a large, but sparse matrix equation for , a vector of
unknown coefficients of electric field

(5)

where is the global finite-element (FE) matrix and is a
known vector representing the sources of the problem and de-
rived from .

A point of interest with regards to optimization is that a
derivative of a scattering parameter can then be efficiently
calculated with the adjoint variable method [12]. It has been
shown [11] that, for a scattering parameter , the adjoint
variable conveniently becomes just the field solution when
port is excited and the derivative with respect to a design
parameter becomes

(6)

From (6), any derivative of a scattering parameter can be com-
puted directly from the field solutions needed to compute

. No additional system of equations needs solving—thus pro-
viding cheap and efficient calculation of . Furthermore,
since any cost function is defined to be a function of-param-
eters, computing becomes trivial.

Since any numerical method is an approximation to the actual
solution, it will contain a certain error. The solution accuracy is a
function of the number of DOFs in the problem. Increasing the
number of DOFs reduces the error in the solution. Increasing
DOFs in a FE problem is commonly achieved by subdividing
elements or by approximating the field solution in each element
with higher order basis functions. Regardless of the method, the
computational benefits of concentrating DOFs in certain areas,
adaptively, are well established. There are three key components
to any adaptive algorithm: error estimation, error indication, and
the refinement method.

An error estimator estimates the error in the quantity of in-
terest in the problem for a particular mesh. Two common termi-
nation criteria are to adapt until the estimated field error in each
element has been reduced to a certain tolerance or to adapt until
the estimated error in a global quantity of interest has reached a
certain tolerance.

An error indicator [13] assesses the relative error in each FE
for use by the refinement algorithm in choosing where to add
DOFs. An indicator does not have to provide an absolute esti-
mate of the error. It only has to assess the errorrelative to the
rest of the elements in the mesh. Note also that an indicator may
be an assessment of the local contribution to aglobal quantity
[14].

Refinement techniques are methods for adding DOFs to one
or many elements in a mesh in order to increase the accuracy
of the overall solution. An example of a refinement technique is
to refine a fixed number of elements at each step (e.g., 25% of
all elements). The elements refined are those with the highest
errors, as predicted by the error indicator. As mentioned earlier,
to increase the accuracy of the solution, one must increase the
DOFs by either adding more elements or increasing the poly-
nomial orders of existing elements in the mesh. The process of
subdividing an element is referred to as-type adaption [15].

-type adaption (or-adaption) is a method based on increasing
the orders of elements to increase the accuracy of the solution
[16], [17]. In order to allow mixing of the orders of elements in
a mesh, basis functions in each element must be hierarchical. In
this study, -adaption is used with the hierarchical elements of
[18].

The adaption is performed for a single frequency, the adaption
frequency . This is chosen to be the highest frequency in the
range of interest in order to adapt with respect to the shortest
wavelength—thus ensuring higher accuracy than adapting at
lower frequencies. Once the estimate of error is below a certain
tolerance, the adaptive process stops and a “post-adaptive” fre-
quency sweep is then used (with the same distribution of DOFs
as yielded by the adaptive procedure) to calculate the cost func-
tion over a range of frequencies. The frequency sweep requires
additional FE solutions at a number of discrete frequency points.
An alternative would be to use a technique that finds higher
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derivatives of the field with respect to frequency, and builds the
frequency response in this way [19]–[23].

For each adaptive iteration, 25% of all the elements are in-
creased in order by one. Since accurate gradient information is
necessary for the types of optimizers used in this study, the error
estimator used for termination of the adaption is based on the
gradient of the cost function. The derivative of a cost function
with respect to a geometric parametercan be expressed as a
sum of derivatives at nodes on all boundaries and interfaces pa-
rameterized by . A good estimate of the error in this derivative
can be found from the rate of change in the cost function due to
the perturbation ofinternal nodes of the mesh (internal nodes
being those whose movement do not alter the geometry of the
problem) [24]. For various cost functions (defined for a single
frequency), good estimates of the errors in their gradients can
be computed with little computational effort [24].

Error indication is based on refining , the cost function
at the adaption frequency. It has been shown that, in problems
where a global quantity (such as a cost function based on-pa-
rameters) is desired rather than the field itself, a targeted error
indicator (TEI) is the better choice [14]. From the framework in
[14], a TEI for microwave devices can be derived.

Quantities are defined to be the real and imagi-
nary parts of the complex scattering parameters such that

(7)

where . The estimated errors in are

(8)

where is an estimate of the change in the complex-pa-
rameter when theth DOF is zeroed. An error indicator for the

th DOF, based on global quantity, is then defined as follows:

(9)

where the terms of the sum depend on the choice of cost func-
tion.

An error indicator for a th-order element can now be defined
as a sum of the contributions of for all DOFs of that element
that are of order (i.e., not contained in the element of order

)

(10)

While it may seem computationally expensive to compute
a number of times for each element in order to evaluate

the indicator of (10), the programming is quite simple and the
computational costs are low. For calculation of-parameters,
(1) can be alternately written in terms of the bilinear form

(11)

Introducing basis functions reduces (11) to

(12)

From (12), we see that the computational expense in calculating
an -parameter comes from the matrix calculation of the general
form

(13)

where and are a pair of FE solutions and is the
global matrix. Function can be decomposed into two parts as
follows:

(14)

where is with its th DOF zeroed, i.e.,

(15)

and can be computed by

(16)

An efficient algorithm that uses (16) to calculate all changes,
i.e., , is

:

:
:

If , skip (to account for the
sparsity of )

If :

This algorithm computes with no more com-
putational cost than computing . Using this approach, the
estimates of the changes of the complex-parameters when
each DOF is zeroed, i.e., , need only be com-
putedonce,globally, and stored for subsequent use. Any esti-
mate of , needed in (9) for DOF, is readily available from
global quantities.

III. OPTIMIZATION TECHNIQUE

Let be the cost function to be minimized andbe a column
vector of real-valued design variables. Since, in general, it is
desirable to satisfy constraints on the design variables during
the optimization, the problem to be solved is

minimize

subject to:

(17)
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where is the total number of constraints, of which are
equality constraints. The solution of (17) can be shown to
satisfy the Kuhn–Tucker equations

(18)

where is the Lagrangian function

(19)

and is an -vector of Lagrange multipliers, taking the value
at the optimum. The approach taken by direct optimizers is

to find a solution to (18) that islocally minimal; in general,
such a point will not also be a global minimum. In this study,
the MATLAB toolbox (function “constr.m”) was used to do the
constrained optimization. This solves (18) for a local minimum
using sequential quadratic programming (SQP).

The details are in [25]. At each step of SQP, a new search
direction is generated by solving a simpler quadratic-program-
ming (QP) subproblem. To set up this subproblem requires the
latest estimate of and the gradient at this point. Once a
new search direction is found, a line search determines the point
along that direction that has the smallest value ofconsistent
with the constraints. Another QP subproblem is then set up.

There are a number of ways this iteration can be terminated.
Perhaps the simplest method is to stop when the change inor

from one step to the next is sufficiently small, but this can be
unreliable because, occasionally, there will be a small change
even a long way from the local optimum. The method used in
this study is to terminate when the gradient of the Lagrangian
is small enough since, according to (18), this gradient should
be identically zero at the optimum. “Small enough” we take to
mean a sufficient reduction for the initial value, i.e., stop when

(20)

where superscript denotes the value at the end of theth line
search and is the required reduction factor. A value of 1000
was used in this study.

IV. CONTROLLING ACCURACY DURING OPTIMIZATION

Many optimization problems deal with cost functions that can
be determined analytically. In such cases, the cost function is
in effect “infinitely” accurate and the accuracy of cost-function
evaluations (CFEs) is not a concern. In problems where a CFE
is calculated using a numerical approximation, the accuracy of
the CFE becomes an issue.

Two quantities that must be chosen in a design optimiza-
tion are the accuracy of the optimization process itself (termi-
nation criteria) and the accuracy of the cost function at the op-
timum. One way of ensuring that an optimizer finds an accu-
rate optimum is to perform every CFE as accurately as that of

Fig. 1. Block diagram of an optimization scheme with an accuracy link.

the final CFE. However, heavy computation can be avoided by
using CFEs of lower accuracy for steps whereis far from the
optimum. The early steps of an optimization scheme may not
require CFEs that are very accurate. As the process continues
and the parameters near an optimum, every CFE can become
increasingly accurate. The design space of the cost function in
such a scenario is dynamic in nature and is allowed to change
(rather than stay fixed) throughout the optimization until it gets
close to an optimum, where the changes in the design space be-
come very small.

An automated optimization scheme links the optimizer to
each CFE in order to control the level of accuracy of the CFE
throughout the optimization (see Fig. 1) instead of demanding a
fixed accuracy.

In the present case, the CFE is an adaptive FE analysis whose
accuracy is dependent on an error estimate. When the error es-
timated in the FE solution at an adaptive step is below a certain
tolerance, the adaptive process stops. The accuracy link can in-
crease the accuracy of the CFE by reducing the error tolerance.

A quantity that decreases throughout an optimization is the
gradient of the cost function (or, rather, the gradient of the La-
grangian for constrained problems). At an optimum, theo-
retically, . We then require of the CFE that, for a
given positive number

estimated error in (21)

As the optimization progresses, this holds the percentage error
in fixed at a level determined by. As reduces
with an increase in , this has the effect of increasing the accu-
racy of the FE solution as an optimum is approached. Of course,
if is set too small, it may not be possible for the CFE algorithm
to satisfy (21). However, in any cases, a value that is too small
will lead to unnecessarily long computation times, as demon-
strated by the results below. A practical range for alpha is be-
tween 0.01–1; a value of 0.1 was found to work well for the
examples tried to date.

For problems involving analysis over a range of frequencies,
the cost function and its gradient (and, in turn, ) is cal-
culated as a sum over a number of discrete frequency points.
Since the adaptive process is performed for a single frequency,
the estimate of the error in is available only at the adap-
tion frequency . Requirement (21) is approximated by

estimate of error in (22)
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where is the gradient of the Lagrangian of the single fre-
quency cost function and is the number of frequency
points sampled. Since is calculated by

(23)

from (22) we have

est. error in est. error in

(24)

Since we do not have error estimates for the Lagrange multi-
pliers, we drop this term and require simply that

estimate of error in (25)

A good estimate for the error in is available from the FE
solution, as mentioned above and explained in [24]. In order to
smooth out any potential discontinuities due to large changes
in , a weighted-average approach is used and (25) be-
comes

(26)

where estimate of error in ,
and the weight was typically chosen to

be 0.9.
The present CFE has two parts. The first part is the-adaptive

process, where the FE solution adapts at a single frequency until
(26) is satisfied. (The error indicator used for the adaption is
(10), targeted toward the single frequency cost function.)

After the adaption is complete, the second part of the FE anal-
ysis is a post-adaptive frequency sweep over thepoints per-
formed with the same distribution of DOFs as the final step of
the adaption. The adaptive frequency is available from the first
part and does need to be recalculated, thus, the frequency sweep
is actually performed over points. The result of the fre-
quency sweep is the cost function and its gradient—the desired
quantities needed as input to the optimizer.

The adaption need not necessarily be performed over a single
frequency. Alternatively, a frequency sweep could be performed
at each adaptive step to calculate the full gradient . How-
ever, this would be very costly computationally and the approx-
imation works adequately in practice.

A subtlety that was encountered in testing was the phenom-
enon of “diagonal flipping.” For small changes in geometry, the
structure of the mesh might change. While the change may be
as small as a diagonal being flipped between two adjacent tri-
angles (Fig. 2), this variation in the FE solution will make the
numerical cost-function discontinuous (see Fig. 3).

Smalldiscontinuities in throughout theoptimizationareusu-
ally acceptable, except near termination whenis changing by
small amounts and the gradients are small. Here, there can be an
adverse effect on convergence. A certain level of continuity near
localoptimacanbepreservedbyavoiding re-meshing; insteadall
nodesaffectedbythatchangearedraggedintheappropriatedirec-
tion by the amount . Forcing the same mesh configuration

Fig. 2. Diagonal flipping between adjacent triangular elements.

Fig. 3. Discontinuous cost function.

for large changes in geometry can create poorly shaped elements;
thus,dragging thenodes replaces re-meshingonlywhen themax-
imum change in a parameter is less than 10%. This was found to
work well in practice.

The accuracy of a CFE is only changed at main optimization
steps. Line-search CFEs are kept at a constant level of accuracy
as far as possible, i.e., using the same right-hand side in (26).
Varying the accuracy of line-search CFEs changes the target of
the bisection algorithm (the line-search method used). Attempts
to reduce the cost function in such cases can lead to a large
number of line-search steps and possible nonconvergence.

The optimization–adaption system is illustrated as a block
diagram in Fig. 4. In order to allow the first CFE of the
optimization to be adaptive, a value for is required.
To provide a rough reference value, a pre-optimization CFE is
performed nonadaptively at a uniform low order (chosen to be
second order). The geometry for this pre-optimization step is
the same as in the first optimization step. The approximation is
made that is approximately equal to the pre-optimiza-
tion computation of . This quick uniform-order CFE
adds little to the overall computational cost, yet allows adaptive
solving for the first CFE of the optimization.

V. RESULTS

We optimize three -plane rectangular waveguide junction
models: a T-junction with an inductive post, a mitered right-
angled bend with a dielectric column, and a two-cavity iris-
coupled filter. Three optimizations with different accuracy con-
trols are compared for each problem: , and
a third benchmark case. The benchmark optimization requires
each CFE to be of the same accuracy as the CFE at termination.
The termination criterion (20) guarantees that the final gradient
of the Lagrangian (when the optimization terminates) is th
of its initial value. Combining (20) and (25) gives the accuracy
link for any CFE for the benchmark or “fixed accuracy” case

estimate of error in (27)

where .
In comparing the costs of optimizing the three different de-

vices using the system described by Fig. 4, cumulative floating-
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Fig. 4. Optimization–adaption block diagram.

point operation counts are used rather than CPU times. In a typ-
ical FEM, most of the computational effort lies in solving the
matrix equation. The size of the matrix equation depends on the
total number of DOFs () for that solution. In two dimensions,
the computational cost of solving a matrix equation by an ef-
ficient sparse direct method, such as the frontal method [26],
is roughly proportional to for large . Since the computa-
tional cost of the optimization program, parameterization, and
meshing is negligible compared to the cost of the matrix equa-
tions solved during a CFE, is taken as approximately the
total computational cost of a single optimization step.

The computational cost of any CFE then is based on the
cumulative cost of solving a number of matrix equations.
An -port device requires FE solutions per frequency. In
the -adaptive FE solution, if adaptive steps are taken to
converge the solution at a single frequency and the subsequent
frequency sweep requires an additional solutions, the
cost of one CFE is

(28)

where is the number of DOFs of theth adaptive step. The
overall cost of an optimization is taken to be the sum of the
computational costs of the CFEs.

A. Waveguide T-Junction With Inductive Post

In this example (Fig. 5), the return loss at the input (port 1)
is optimized with the use of a symmetrical inductive septum (or
post). Reflection can be minimized by varying the dimensions

Fig. 5. Initial geometry and dimensions of the waveguide T-junction.a = 2

cm, l = 0:1� = 0:23 cm,g = 0:5 cm,g = 1 cm.

of the inductive post to help the incident wave split and change
direction by 90 (i.e., maximizing the transmission to ports 2
and 3) [27], [28]. The initial geometry of the model and its geo-
metric parameters are given in Fig. 5.

The cost function for the problem is defined as

(29)

where the single-frequency cost function is

(30)

The cost function calculation samples discrete points
between 8–12 GHz. The frequency of adaption is taken to be the
center frequency GHz.
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Fig. 6. “True” values of the cost function and the corresponding computational costs for different accuracy links in the optimization of the T-junctions.

For any problem, it is important to choose constraints that
limit the geometric parameters to a range where any geometry of
the device within that range is physically possible. A poorly con-
strained optimization problem (or an unconstrained one) may
allow edges or boundaries to overlap—making it physically im-
possible to build and a useless design. A well-constrained op-
timization problem will converge more quickly than a poorly
constrained or unconstrained problem. Although the constraints
for the inductive post are quite simple, the choice of upper and
lower limits must be made. An additional concern in the opti-
mization of a device is meshing. While a particular geometry
may be feasible (in a physical sense), meshing difficulties can
easily arise when modeling the device. Edges too close together
or too small in themselves may force the generation of many
small elements—which may not be necessary. To prevent this, a
minimum “cushion” of space was left between any two bound-
aries—thus affecting the choice of bounds for the parameters.
For the T-junction meshes, a cushion of 0.1 cm worked well.
The lower limits for both parameters are taken to be 0.1 cm. The
upper limit for (1.9 cm) was chosen because at cm,
the bottom edge of the post is 0.1 cm shorter than the port width
of 2 cm. The upper limit of was chosen because when
is at its upper limit, the left and right edges of the post are
0.1 cm away from ports 2 and 3, respectively. Four inequality
constraints of the form are

(31)

Table I gives the final computational cost for each optimiza-
tion and a speed-up factor in each case. The speed-up factor is
relative to the cost of the benchmark fixed-accuracy optimiza-
tion. The results in Table I show the impressive speed-up that
can be attained by controlling accuracy using. In the case

, the design process finds the same optimum as the most
accurate case, but at 117 times the speed. However, Table I gives
information only about the final costs. Fig. 6 shows the values of

TABLE I
COMPUTATIONAL COSTS AND SPEED-UP FACTORS FORDIFFERENT

ACCURACY-LINKS IN THE T-JUNCTION OPTIMIZATION

Fig. 7. Initial geometry and dimensions of the miter bend.a = 2 cm, l =
0:1� = 0:454 cm,g = 2

p
2 cm,g = 1 cm,g = 1 cm,g = 2

p
2 cm.

TABLE II
COMPUTATIONAL COSTS ANDSPEED-UP FACTORS FORDIFFERENTACCURACY

LINKS IN THE MITER-BEND PROBLEM

the cost function versus computational cost throughout the opti-
mization. In order to provide a fair comparison of cost-function
values, each cost function must be of the same accuracy level.
Since tenth-order elements (for the work in this paper) achieve
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Fig. 8. “True” values of the cost function and the corresponding computational costs for different accuracy links in the optimization of the miter bend.

the highest accuracy (for a fixed mesh size), each point in Fig. 6
is the tenth-order cost-function value at the geometry of that par-
ticular optimization step. In other words, it is a plot of the “true”
value of the cost function obtained using the different accuracy
links.

Fig. 6 shows that a great deal of the computational costs in
the optimizations lie in the final few steps, which is expected
because the CFEs require higher accuracy levels as an optimum
is approached. In addition, Fig. 6 shows that throughout an op-
timization (not only at the end), controlling accuracy can dras-
tically reduce computation time without sacrificing the validity
of the cost function. In other words, despite the fact that CFEs
are of lower accuracy at the initial stages of an optimization (for

and ), the cost function does genuinely reduce
by the same amount as the fixed accuracy optimization—at a
much lower computational cost.

B. Miter Bend With Dielectric Column

In this example (Fig. 7), the return loss is optimized in two
ways: by varying the length of the chamfer at the 90bend and
varying the dimensions and position of the dielectric block [29].
The definitions of the cost function and frequency range are
identical to those given in the previous problem. The optimiza-
tion parameters and initial geometry for the problem are shown
in Fig. 7. The constraints that were derived for this problem are

(32)

Fig. 9. Initial geometry and dimensions of the model of one-quarter of the
two-cavity filter.a = 19:05 mm, l = 0:1� = 3:31 mm, t = 0:1 mm,g =

4:5 mm,g = 3 mm,g = 16 mm.

where cm and cm. The frequency of
adaption is taken to be 10 GHz, i.e., the center frequency. The
initial geometry centers the square dielectric block (of dimen-
sion 1 cm 1 cm) in the middle of the device.

Table II gives the final computational cost for each optimiza-
tion and a speed-up factor in each case. The results show the
speed-up that was attained by varying.

Fig. 8 plots the values of the cost functions and associated
costs throughout the optimization. It is apparent that great sav-
ings can be realized at any step of the optimization when the size
of is varied. (The last value of for the optimization
is actually higher than that of the previous step. This is a results
of terminating the optimization within a line search. While the
actual cost function may increase slightly, the gradient of the
Lagrangian has satisfied the termination criterion.)

C. Two-Cavity Iris-Coupled Waveguide Filter

Fig. 9 shows a two-cavity iris-coupled filter, which is to be op-
timized for a given frequency band. The design and optimization
of iris-coupled waveguide cavities using computer-aided design
(CAD) tools is common in achieving bandpass filter charac-
teristics [30]–[33]. Filters of this type have resonating cavities
(where each guide cavity is roughly in length), coupled by
thin (or thick) irises with coupling apertures between any two
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Fig. 10. Initial and optimized frequency responses of the return loss for the two-cavity filter.

cavities. While some designs make use of varying the thickness
of each iris as design parameters [30], [32], the two-cavity filter
described below has irises of constant small thickness.

The characteristics of a bandpass filter are to maximize trans-
mission over a band of frequencies and stop transmission out-
side that band. While filter design specifications are commonly
given by passband and stopband attenuation, a slightly different
approach is used here: minimize reflection in the passband and
minimize transmission in the stopband. The cost function for
the problem is

(33)

where there are discrete frequency points sampled in the
passband and points in the stopband. The single frequency
cost functions [in the summation terms of (33)] are given by

(34)

The design problem has three varying geometric parameters.
The aperture width of the left- and right-most irises (symmet-
rical) is . The aperture width of the center iris is. The
lengths of the two symmetrical cavities is. The geometric pa-
rameters and dimensions are illustrated for one-quarter of the
problem in Fig. 9.

The frequency range is taken to be between 11.8–12.2 GHz
with a passband (of 100-MHz bandwidth) centered at

GHz. The passband and stopband are, therefore,

Passband: GHz GHz

Stopbands: GHz GHz

GHz GHz (35)

The total number of frequency points sampled for the CFE is
, with points in the passband and

points in the stopband. A greater number of points are taken
in the passband because, in the optimal design of the filter, both

TABLE III
COMPUTATIONAL COSTS ANDSPEED-UP FACTORS FORDIFFERENTACCURACY

LINKS IN THE FILTER PROBLEM

cavity resonances are within this range of frequency. The FE
solution is adapted at the center frequency.

Choosing constraints for the geometric parameters is quite
simple because, as long as the parameters are positive quanti-
ties, there cannot be any overlapping of edges. Six inequality
constraints can be written as

(36)

The thickness of the irises was taken to be 0.1 mm.
To optimize the filter effectively, both resonant frequencies

must be within the passband frequency range (also meaning they
are close together because of the relatively narrow bandwidth).
A poor initial choice for might have resonant frequencies that
are far apart and far from the passband. In addition, a resonant
cavity frequency might be outside the entire range of frequencies
sampled (outside the stopband as well). Using a frequency
sweep for such a poor design will not work because there will
be no detection of the presence of the cavity resonance in the
sampled frequency range. However, microwave filter design is a
good example of where an initial geometry is found by an initial
design method [9] and “tuned” by the optimizer to enhance
performance. The method of filter design from [9] is used to
design a filter to have the frequency response within a desired
initial range. The initial geometry used is mm.
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Fig. 11. “True” values of the cost function and the corresponding cumulative computational costs for different accuracy links in the optimization ofthe two-cavity
filter problem.

The initial design and final frequency responses for the re-
turn loss of the two-cavity filter are shown in Fig. 10 (based on
an evaluation of 500 discrete points in the frequency range). As
expected, due to the sensitivity of the device, the geometric pa-
rameters do not change by a large amount in the optimization
of the device (maximum parameter change is roughly 20%), yet
produce a big difference in the performance of the device.

Table III gives the final computational cost for each opti-
mization and a speed-up factor in each case. Once again, there
is great computational cost saved when optimizing with CFEs
with lower initial accuracy. Fig. 11 shows that, once again, while
much of the computational effort lies in the final steps of the
optimization, there is consistent savings at any point in the op-
timization. In addition, this figure shows that even when the ac-
curacy demand is low, the cost function is reduced in value at
roughly the same rate as the more accurate case.

VI. CONCLUSIONS

Design techniques for a wide variety of microwave devices
are good enough to establish an initial design that lies reason-
ably close to a local optimum. Computational-field analysis can
be used to move the design to that optimum, thereby maximizing
device performance (at least locally). The problem is that ac-
curate field analysis is usually expensive, perhaps prohibitively
so. However, in the early stages of optimization, it is not neces-
sary to perform highly accurate analysis; it just has to be good
enough to move the design in the right direction. By providing
a link from the optimization to the field analysis, the accuracy
of the latter can be progressively improved during the optimiza-
tion so that, in the end, the local optimum is still calculated ac-
curately—but with much less cost along the way. The results
presented above show that this approach is capable of giving
an order of magnitude reduction in computational cost over the
straightforward use of fixed high accuracy throughout. The re-
sults given are for two-dimensional (2-D) problems, where the
analysis times are, in any case, fairly small and the cost savings

perhaps not worthwhile. However, the approach applies equally
to 3-D, where the costs are dramatically greater. Moreover, it is
not limited to the -adaptive method employed here, or even to
the FEM. Any computationally intensive analysis scheme with
a capability for accuracy-time tradeoff could benefit from the
same approach.
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